Transcomputation
 Dr James Anderson FBCS CITP CSci

Transcomputation

- Deals with total systems that have no exceptions
- Transmathematics: total functions
- Computing: exception free
- Applications: best efforts within total paradigm

Assessment

- Individual portfolio: 30\%
- Examination: 70\%

Transcomputation

- Google+ Community Transmathematica
- Bi-annual conference started 2017
- New journal starting January 1st 2018

Course agenda

- Transreal arithmetic
- Relational operators \& sketching graphs
- Trans-two's-complement \& transfloat
- Equations, functions, gradient
- Rotation, angle, polar-transcomplex numbers

Course agenda

- Transvectors, polar-transcomplex arithmetic
- Physics \& modelling
- Logic, sets \& antinomies, knowledge
- Hardware \& software
- Revision

Transreal arithmetic

- Totalises real arithmetic to the extent that it makes the operation of division closed
- Every real number is a finite, transreal number
- There are three non-finite, transreal numbers

Division by zero

- Real arithmetic defines division in terms of the multiplicative inverse
- Real zero does not have a multiplicative inverse
- But there are other ways to define division

Consistency

- Transreal arithmetic proved consistent by machine proof
- Transreal and transcomplex arithmetic proved consistent by construction from the reals

How to Divide by Zero

Transreal-Number Line

Φ

∞

Transreal Numbers

Transreal numbers, t , are proper fractions of real numbers, with a non-negative denominator, d, and a numerator, n, that is one of $-1,0,1$ when $d=0$

$$
t=\frac{n}{d}
$$

With k a positive constant:

$$
-\infty=\frac{-k}{0}=\frac{-1}{0}
$$

$$
\Phi=\frac{0}{0}
$$

$$
\infty=\frac{k}{0}=\frac{1}{0}
$$

Negative Denominators

An improper fraction may have a negative denominator (-k) which must be made positive before any transarithmetical operator is applied

$$
\frac{n}{-k}=\frac{-n}{-(-k)}=\frac{-1 \times n}{-1 \times(-k)}=\frac{-n}{k}
$$

Multiplication

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}
$$

Division

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}
$$

Addition of Two Infinities

$$
\begin{gathered}
\infty+\infty=\frac{1}{0}+\frac{1}{0}=\frac{1+1}{0}=\frac{2}{0}=\frac{1}{0}=\infty \\
\infty+(-\infty)=\frac{1}{0}+\frac{-1}{0}=\frac{1-1}{0}=\frac{0}{0}=\Phi \\
-\infty+\infty=\frac{-1}{0}+\frac{1}{0}=\frac{-1+1}{0}=\frac{0}{0}=\Phi \\
-\infty+(-\infty)=\frac{-1}{0}+\frac{-1}{0}=\frac{-1+(-1)}{0}=\frac{-2}{0}=\frac{-1}{0}=-\infty
\end{gathered}
$$

General Addition

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Subtraction

$$
\frac{a}{b}-\frac{c}{d}=\frac{a}{b}+\frac{-c}{d}
$$

Associativity

$$
\begin{aligned}
& a+(b+c)=(a+b)+c \\
& a \times(b \times c)=(a \times b) \times c
\end{aligned}
$$

Commutativity

$$
\begin{aligned}
& a+b=b+a \\
& a \times b=b \times a
\end{aligned}
$$

Partial Distributivity

$$
a(b+c)=a b+a c
$$

When $\quad a \neq \pm \infty$ or

$$
b c>0 \text { or }
$$

$$
(b+c) / 0=\Phi
$$

Comparison

- Mathematics checks for division by zero and, if found, it fails
- Transmathematics checks for division by zero and always succeeds

Conclusion

- Transreal arithmetic contains real arithmetic
- Each real number is finite
- There are three non-finite, transreal numbers: negative infinity, nullity, positive infinity
- Transcomputation extends all other computation

